首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   22篇
  国内免费   26篇
地球物理   87篇
地质学   78篇
综合类   3篇
自然地理   16篇
  2022年   1篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   6篇
  2016年   8篇
  2015年   8篇
  2014年   10篇
  2013年   7篇
  2012年   6篇
  2011年   9篇
  2010年   12篇
  2009年   11篇
  2008年   10篇
  2007年   13篇
  2006年   7篇
  2005年   12篇
  2004年   8篇
  2003年   5篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   8篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   2篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
1.
2.
Based on one type of practical Biot's equation and the dynamic-stiffness matrices of a poroelastic soil layer and half-space, Green's functions were derived for uniformly distributed loads acting on an inclined line in a poroelastic layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.  相似文献   
3.
4.
5.
This paper presents an analytical method for modeling the dynamic response of a rigid strip footing subjected to vertical-only loads. The footing is assumed to rest on the surface of a viscoelastic half-space; therefore, effects of hysteretic soil damping on the impedance of the foundation and the generated ground vibrations are considered in the solution. To solve the mixed boundary value problem, we use the Fourier transform to cast a pair of dual integral equations providing contact stresses, which are solved by means of Jacobi orthogonal polynomials. The resulting soil and footing displacements and stresses are obtained by means of the Fourier inverse transform. The solution provides more realistic estimates of footing impedance, compared to existing solutions for elastic soil, as well as of the attenuation of ground vibrations with distance of the footing. The latter is important for the estimation of machine vibration effects on nearby structures and installations.  相似文献   
6.
Rocks can be modeled in a continuum framework as fissured, poroelastic materials, i.e., materials with two degrees of porosity, one due to the fissures and another one due to the pores. The governing equations of motion of fissured poroelastic rocks established by Beskos are rederived here by establishing a variational statement which also provides the boundary conditions of the problem. This is accomplished by considering strain, dissipation and kinetic energies as well as the work of external forces. The above statement is also derived here by employing the method of weighted residuals.  相似文献   
7.
An effective approach to modeling the geomechanical behavior of the network and its permeability variation is to use a poroelastic displacement discontinuity method (DDM). However, the approach becomes rather computationally intensive for an extensive system of cracks, particularly when considering coupled diffusion/deformation processes. This is because of additional unknowns and the need for time‐marching schemes for the numerical integration. The Fast Multipole Method (FMM) is a technique that can accelerate the solution of large fracture problems with linear complexity with the number of unknowns both in memory and CPU time. Previous works combining DDM and FMM for large‐scale problems have accounted only for elastic rocks, neglecting the fluid leak‐off from the fractures into the matrix and its influence on pore pressure and stress field. In this work we develop an efficient geomechanical model for large‐scale natural fracture networks in poroelastic reservoirs with fracture flow in response to injection and production operations. Accuracy and computational performance of the proposed method with those of conventional poroelastic DDM are compared through several case studies involving up to several tens of thousands of boundary elements. The results show the effectiveness of the FMM approach to successfully evaluate field‐scale problems for the design of exploitation strategies in unconventional geothermal and petroleum reservoirs. An example considering faults reveals the impact of reservoir compartmentalization because of sealing faults for both geomechanical and flow variables under elastic and poroelastic rocks. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
8.
The transient response of a cylindrical casing–cement structure in a poroelastic stratum under dynamic radial tractions is one of the significant issues during the analysis of downhole operations and the selection of safe material. Based on the Biot theory and general elastic mechanics, this paper gives a set of exact solutions for radial displacement, stresses for the casing–cement system and the pore pressure of the infinite surrounding poroelastic stratum in the Laplace transform space. Solutions are presented for three different types of transient radial loadings acting on the surface of casing, i.e., suddenly applied constant load, gradually applied step load and triangular pulse load. Time domain solutions are obtained using a reliable numerical method of inverse Laplace transforms. A detailed parametric study about the transient response is presented both at the casing–cement interface and the cement–stratum interface, and the distributions of the pore pressure and the effective stresses in the stratum are also examined. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
9.
本文将计算合成地震图的广义反射、透射系数矩阵和离散波数方法应用于静态问题,给出了分层介质中位错点源产生的静态位移场的计算方法。该方法保留了反射、透射矩阵方法的原有优点,通过将数值结果与解析解的对比表明,该方法具有较高的数值精度,可用于研究地震断层活动造成的地表形变。  相似文献   
10.
Anisotropic wave propagation is studied in a fluid-saturated porous medium, using two different approaches. One is the dynamic approach of Biot’s theories. The other approach known as homogenisation theory, is based on the averaging process to derive macroscopic equations from the microscopic equations of motion. The medium considered is a general anisotropic poroelastic (APE) solid with a viscous fluid saturating its pores of anisotropic permeability. The wave propagation phenomenon in a saturated porous medium is explained through two relations. One defines modified Christoffel equations for the propagation of plane harmonic waves in the medium. The other defines a matrix to relate the relative displacement of fluid particles to the displacement of solid particles. The modified Christoffel equations are solved further to get a quartic equation whose roots represent complex velocities of the four attenuating quasi-waves in the medium. These complex velocities define the phase velocities of propagation and quality factors for attenuation of all the quasi-waves propagating along a given phase direction in three-dimensional space. The derivations in the mathematical models from different theories are compared in order to work out the equivalence between them. The variations of phase velocities and attenuation factors with the direction of phase propagation are computed, for a realistic numerical model. Differences between the velocities and attenuations of quasi-waves from the two approaches are exhibited numerically.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号